手机浏览器扫描二维码访问
【我被这个式子的简洁深深吸引住了,我有一种强烈的直觉,也许。。。。。。这才是勾股定理的真正模样!】
沈北看到这里顿时都麻了。
不是。。。。。。
百慕拉在这里开窍了?
事情的发展怎么有点不对劲。
单单从这个勾股定理看来说。
沈北好不容易接受果壳星球的勾股定理里面有S常数。
现在百慕拉通过纸片推导出a2+b2=c2
早干嘛去了!
这不一贯是正确的式子吗?
但令人奇怪的是,果壳星球还在计算什么S小数点后面有多少位。
难道其他人就没发现这么简单的道理?
要知道,以沈北一瓶不满半瓶晃荡的知识量都知道,想要证明勾股定理的方式高达500多种!
什么赵爽弦图,加菲尔德证法,加菲尔德证法变式,青朱出入图,欧几里得证法等等。
方法多的去了。
怎么就轮到百慕拉发现了?
其他人都是傻子不成?
不应该啊。
果壳星球的文明程度可比地球多出几个趁机,不至于什么是真正的“勾股定理”都不知道。
这踏马简直不可思议!
沈北越发的兴趣浓厚起来,继续阅读起来。
【我的期望被破灭了,今天我去找了数学老师,向他说明了我昨天的推导,也就是a2+b2=c2。】
【我满心期待的看着他,希望能从他的脸上看到惊讶的神色。可惜。。。。。。没有。】
【老师只是笑了笑,微微摇摇头说:不对。。。。。。】
陆原语录作为一个超级富二代装穷是一种什么体验?别拦着我,没有人比我更有资格回答这个问题!...
言安希醉酒后睡了一个男人,留下一百零二块钱,然后逃之夭夭。什么?这个男人,竟然是她未婚夫的大哥?一场豪赌,她被作为赌注,未婚夫将她拱手输给大哥。慕迟曜是这...
这个江湖。有武夫自称天下第二一甲子。有剑仙一剑破甲两千六。有胆小的骑牛道士肩扛两道。但一样是这个江湖,可能是江湖儿郎江湖死,才初出茅庐,便淹死在江湖中。可能对一个未入江湖的稚童来说,抱住了一柄刀,便是抱住了整座江湖。而主角,一刀将江湖捅了个透!临了,喊一声小二,上酒...
心潮澎湃,无限幻想,迎风挥击千层浪,少年不败热血!...
化神境修士陈默,与小师妹双双陨落后,竟然重回地球的高三时代?!前世初恋,陈默不屑一顾。前世敌人,陈默一拳打爆。前世你看我不起?今世我让你望尘莫及!...
我是万古人间一剑修,诸天之上第一仙。...