手机浏览器扫描二维码访问
。。。。1。。。。。。2。。。。。。1
1。。。。。3。。。。。。。3。。。。。。。。。1(请忽略省略号,不加的话起点会自动缩进,晕了)
。。。。。。。
徐云一共画了八行,每行的最外头两个数字都是1,组成了一个等边三角形。
熟悉这个图像的朋友应该知道,这便是赫赫有名的杨辉三角,也叫帕斯卡三角——在国际数学界,后者的接受度要更高一些。
但实际上,杨辉发现这个三角形的年份要比帕斯卡早上四百多年:
杨辉是南宋生人,他在1261年《详解九章算法》中,保存了一张宝贵图形——“开方作法本源”图,也是现存最古老的一张有迹可循的三角图。
不过由于某些众所周知的原因,帕斯卡三角的传播度要广很多,一些人甚至根本不认杨辉三角的这个名字。
因此纵有杨辉的原笔记录,这个数学三角形依旧被叫做了帕斯卡三角。
但值得一提的是。。。。。。
帕斯卡研究这幅三角图的时间是1654年,正式公布的时间是1665年11月下旬,离现在。。。。。
还有整整一个月!
这也是徐云为什么会从色散现象入手的原因:
色散现象是很典型的微分模型,甚至要比万有引力还经典,无论是偏折角度还是其本身的“七合一”表象,都直接的指向了微积分工具。
17这个概念,更是直接与指数的分数表态挂上了钩。
接触到色散现象的小牛要是不想到自己正一筹莫展的‘流数术’,那他真可以洗洗睡了。
小牛见到色散现象——小牛产生好奇——小牛测算数据——小牛想到流数术——徐云引出杨辉三角。
这是一个完美的逻辑递进的陷阱,一个从物理到数学的局。
至于徐云画出这幅图的理由很简单:
杨辉三角,是每个数学从业者心中拔不开的一根刺!
杨辉三角本来就是咱们老祖宗先发明并且有确凿证据的数学工具,凭啥因为近代憋屈的原因被迫挂在别人的名下?
原本的时空他管不着也没能力去管,但在这个时间点里,徐云不会让杨辉三角与帕斯卡共享其名!
有牛老爷子做担保,杨辉三角就是杨辉三角。
一个只属于华夏的名词!
随后徐云心中呼出一口浊气,继续动笔在上面画了几条线:
“艾萨克先生,您看,这个三角的两条斜边都是由数字1组成的,而其余的数都等于它肩上的两个数相加。
从图形上说明的任一数C(n,r),都等于它肩上的两数C(n-1,r-1)及C(n-1,r)之和。”
说着徐云在纸上写下了一个公式:
C(n,r)=C(n-1,r-1)+C(n-1,r)(n=1,2,3,···n)
以及。。。。。。
(a+b)^2=a^2+2ab+b^2
(a+b)^3=a^3+3a^2b+3ab^2+b^3
(a+b)^4=a^4+4a^3b+6a^2b^2+6ab^3+b^4
婚后 情人节,韩经年问今天怎么过? 夏晚安搂着被子,昏昏欲睡的答睡觉。 圣诞节,韩经年问今天怎么过? 夏晚安抱着枕头,漫不经...
千万年前,李七夜栽下一株翠竹。八百万年前,李七夜养了一条鲤鱼。五百万年前,李七夜收养一个小女孩。今天,李七夜一觉醒来,翠竹修练成神灵,鲤鱼化作金龙,小女孩成为九界女帝。这是一个养成的故事,一个不死的人族小子养成了妖神养成了仙兽养成了女帝的故事。...
少帅说我家夫人是乡下女子,不懂时髦,你们不要欺负她!那些被少帅夫人抢尽了风头的名媛贵妇们欲哭无泪到底谁欺负谁啊?少帅又说我家夫人娴静温柔,什么中医...
本书旨在打造第一刁民!...
大妖降世,卷风云万里,遍野尸横无归人。痴儿怨女,叹红尘滚滚,牵马负刀不回头。圣人云端坐,邪灵白日行。魏来自卑微而来,踏黄泉碧落,吞无边苦海,只为证天道已死!人道当兴!...
她本是实力强悍,医术超群的世家家主。 一朝穿越成将军府的废柴嫡小姐,成为第一位被退婚的太子妃,人人嘲讽! 选秀宴上,她被赐嫁给鼎鼎有名的残废王爷。 ...